

LET'S SIMULATE THE WORLD OF THE FUTURE

21 – 22 October 2013 Pacengo del Garda, Verona - ITALY

Towards smart hydrogen economy: solar-to-hydrogen open and hybrid cycles

Michael Gasik Aalto University Foundation, Finland

European energy policy

Energy density – storage comparison

How to make hydrogen?

Hydrogen production technology	Benefits	Barriers
Electrolysis: splitting water using electricity	Commercially available with proven technology; Well-understood industrial process; modular; high purity hydrogen, convenient for producing H ₂ from renewable electricity, compensates for intermittent nature of some renewables	Competition with direct use of renewable electricity
Reforming (stationary and vehicle applications): splitting hydrocarbon fuel with heat and steam	Well-understood at large scale; widespread; low- cost hydrogen from natural gas; opportunity to combine with large scale CO ₂ sequestration ('carbon storage')	Small-scale units not commercial; hydrogen contains some impurities - gas cleaning may be required for some applications; CO ₂ emissions; CO ₂ sequestration adds costs; primary fuel may be used directly
Gasification: splitting heavy hydrocarbons and biomass into hydrogen and gases for reforming	Well-understood for heavy hydro-carbons at large scale; can be used for solid and liquid fuels; possible synergies with synthetic fuels from bio- mass- biomass gasification being demonstrated	Small units very rare; hydrogen usually requires extensive cleaning before use; biomass gasifica- tion still under research; biomass has land-use implications; competition with synthetic fuels from biomass
Thermochemical cycles using cheap high temperature heat from nuclear or concentrated solar energy	Potentially large scale production at low cost and without greenhouse gas emission for heavy industry or transportation; International collaboration (USA, Europe and Japan) on research, development and deployment	Complex, not yet commercial, research and development needed over 10 years on the process: materials, chemistry technology; High Temperature nuclear reactor (HTR) deploy- ment needed, or solar thermal concentrators
<i>Biological production</i> : algae and bacteria produce hydrogen directly in some conditions	Potentially large resource	Slow hydrogen production rates; large area needed; most appropriate organisms not yet found; still under research

Cycles comparison: visualisation

- Goal: to extract useful information for human eyes
- Mapping the dataset onto a 3-D space preserving distance information of the original dataset as much as possible.
- Making partitioning of complex datasets into less complex pieces and presenting them in a non-overlapping manner so regularities or irregularities could be seen
- In this case using Grapheur software (by Reactive Search)

 ✓ able to discover hidden correlations between parameters and to evaluate experimental data critically in respect to outliers and possible errors.

✓ **does not postulate any model** for the interaction parameters neither require any fitting parameters to provide interpolation and extrapolation.

Data must be pre-processed to examine possible errors!

Comparison of thermochemical cycles

Normalized parameters for major H₂ production cycles: AE – alkaline electrolysis, HTE – high-temperature electrolysis, IS – iodine-sulphur, HyS – hybrid sulphur, FeOx – iron oxides cycle; *Sol – solar heat input, Nucl – nuclear heat, Geo – geothermal input.*

Cycles comparison: 3D Euclidian clustering

The "worst" area

The "best" area

Hybrid sulfur cycle process

- Original idea by Westinghouse
- The key issue:
 - water electrolysis E° = 1.23 V
 - SO₂ electrolysis E° = <u>0.17 V</u> only = 4-5 times less energy than for water!
- Direct making H₂SO₄ and H₂ at low temperature:

$SO_2 + 2 H_2O \rightarrow H_2SO_4 + H_2$

 Acid being concentrated and split into SO₂ and O₂ at high-T part (usually by heat from NPP)

Why integrated cycles?

BENEFITS:

- more options to efficiently recycle material streams
- efficient share of equipment
- efficient generation and use of utilities
- increased heat integration
- efficient share of treatment facilities, e.g. treatment of waste waters
- reduced bulk storage and, hence, less emissions from storage
- reduced loading/unloading of raw materials and, hence, less emissions
- more options for recycling condensates, process waters, etc.

However:

- integration might decrease the operational flexibility (shutdown for maintenance might cause shutdown of dependent processes)
- Co-products demand and supply might mismatch

SOL2HY2 Project

Topic: SP1-JTI-FCH.2012.2.5 **Thermo-electrical-chemical processes with solar heat sources**

- Basic and applied research on materials and key components for the most efficient thermo-electrical-chemical water splitting cycles
- To improve the technical & economic feasibility of these processes for CO_2 -free hydrogen production with focus on the scale up of the technology.
- The solar interface, solar reactors, materials performance and process strategies have been identified as aspects crucial for a reliable and economic operation of a respective plant.

Fuel Cells and Hydrogen Joint Undertaking (FCH JU)

Key process: Outotec[®] Open Cycle

Patented: FI, WO, EA, ZA, US, JP, CN, CA, SA, JR

"The world is not enough" ©

- → Worldwide 22 major Cu smelters: the largest gas output, >25% SO₂ indicates hydrogen as a by-product annually ~223000 t H₂
- If count ALL the plants annual potential 30-100 billion Nm³ H₂, which is ~10-15% of worldwide industrial H₂ production: Zn, Pb, FeS rosters, H₂SO₄ plants (250 Mt/y = 5 Mt H₂)
- Costs forecast: €0.6-1.0/kg H₂ (recently ~€3-5/kg) at recent material and energy prices (without capital costs and acid sales revenues)
- Almost all stages are tested and industrially verified, costs reduction, optimization and simplification are needed

SOL2HY2 project idea:

Solar tower Jülich

- Receiver 22.7m² (Intratec, Saint-Gobain)
- Tower 60m (Züblin)
- 2150 Heliostats à 8.2 m² (SHP/AUSRA)
- therm. Storage 1h
- Turbine 1.5 MWe (KKK-Siemens)
- Full capacity hours: ca. 1000 h (Storage).
- Electricity Production Energie 1350 MWh

Average annual solar radiation 500 - 800
800 - 1100
1100 - 1400
1400 - 1700
1700 - 1900
1900 - 2200
More than 2200 Wh per square metre per year

Challenges: how CAE can help

- Holistic meta-analysis of technical, chemical, economic and environmental data \rightarrow combined H₂ production cycles optimization
- Solar interface (solar energy, thermal storage, balance of plant) →
 improvement on different levels
- Chemical process engineering → smart reactor design and operation
- Key phenomena analysis (species transport, thermodynamics, kinetics)
 → creation of engineering meta-models for plants "green design"

Problems multi-disciplinarity must be properly considered to solve them efficiently!