

Project Overview

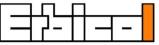
Solar To Hydrogen Hybrid Cycles

SEVEN FRAMEWORK PROGRAMME FCH-JU-2012-1

SP1-JTI-FCH.2012.2.5 : Thermo-electrical-chemical processes with solar heat sources

Project acronym: SOL2HY2

Project full title: Solar To Hydrogen Hybrid Cycles



Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Project background

Fuel Cells and Hydrogen Joint Undertaking (FCH JU)

2012 Call for Proposals

Horizontal application areas: Transportation & Refuelling Infrastructure; **Hydrogen Production**, Storage & Distribution; Stationary Power Generation & CHP; and Early Markets.

Topic: SP1-JTI-FCH.2012.2.5 **Thermo-electrical-chemical processes with solar heat sources** (Collaborative Project)

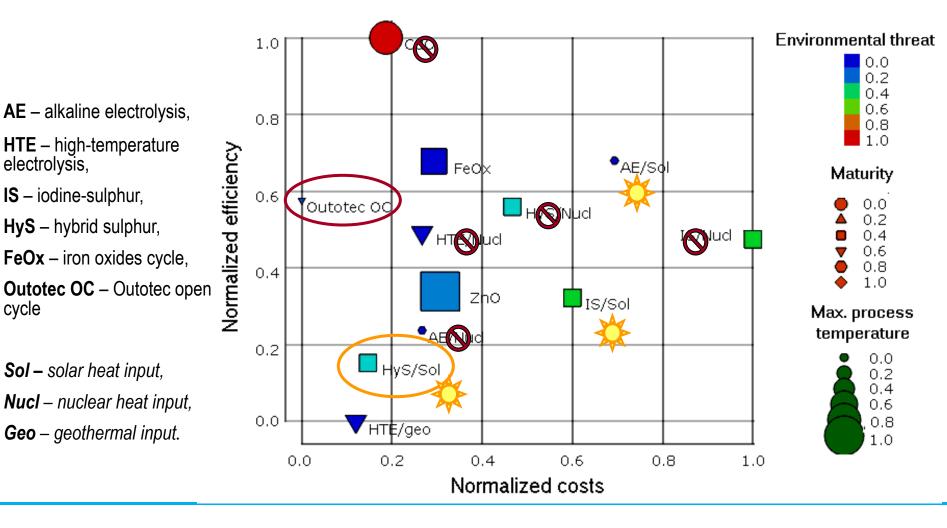
Topic: SP1-JTI-FCH.2012.2.5

Thermo-electrical-chemical processes with solar heat sources

Call Topic Objectives:

Basic and applied research on materials and key components for the most efficient thermo-electrical-chemical water splitting cycles: to improve the technical & economic feasibility of these processes for CO_2 -free hydrogen production with focus on the scale up of the technology.

The solar interface, solar reactors, materials performance and process strategies have been identified as aspects crucial for a reliable and economic operation of a respective plant.


Thermochemical cycles

- Recently only alkaline electrolysis can produce H₂ without greenhouse gases, if run on renewable electricity source.
- Advanced processes, such as thermo-chemical cycles, can be powered by carbon-free sources (nuclear and concentrated solar energy), being more efficient than low temperature processes, reducing power consumption and H₂ cost.
- These processes are very different (process characteristics, maturity, etc.), thus an objective comparison is difficult to make e.g. using only efficiency or costs as a criterion.
- Most promising processes were assessed by IEA and DoE: AE (alkaline electrolysis), HTE (high-temperature electrolysis), IS (iodine-sulfur, based in Bunsen reaction), HyS (hybrid sulfur) and FeOx (iron oxides cycle). Sometimes cycles based on CdO and CuCl are also included, but they have less benefits due to different reasons.
- Of all studied cycles, HyS-based one was prioritized as having the best potential in medium-term.

O. Galzim e.a., J. Multicrit. Decis. Mak., 1, (2011), 177-204

Cycles comparison (IEA Task 25)

A. Lokkiluoto e.a., Environm. Devel. Sustain. (2012), 529-540.

Patented: FI, WO, EA, ZA, US, JP, CN, CA, SA, JR

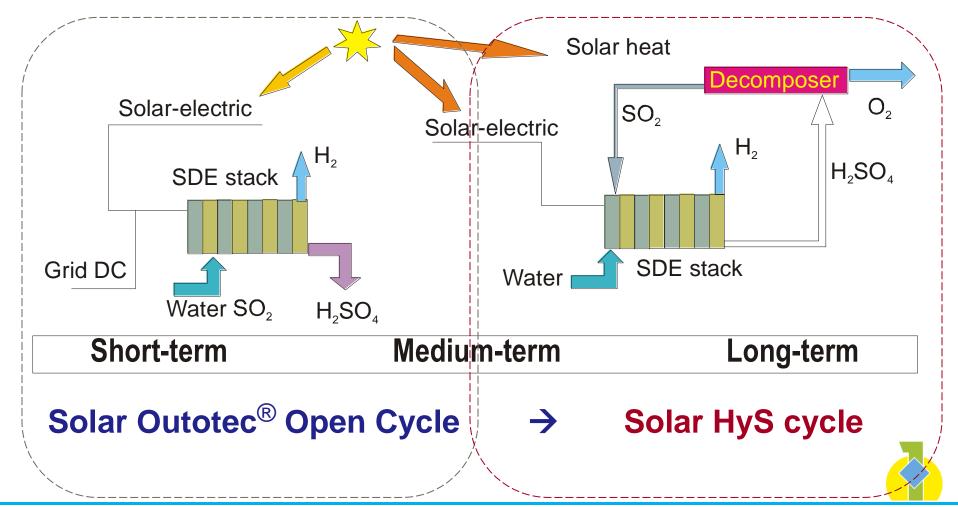
H2SO4?

- "More H₂SO₄ is produced than any other chemical in the world." (European Commission JRC/IPTS report 2006)
- About 200-250 Mt of acid is produced annually worldwide
- Used in fertilizers production, for dehydrating in organic chemical and petrochemical processes, production of TiO₂, HCI, HF, pickling/descaling steel, leaching Cu, U and V, electrolytic baths for nonferrous-metal purification and plating, etc.

250 Mt/a acid = 5 Mt/a H₂ co-production potential

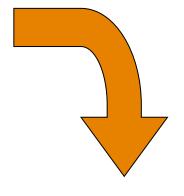
Why integrated cycles?

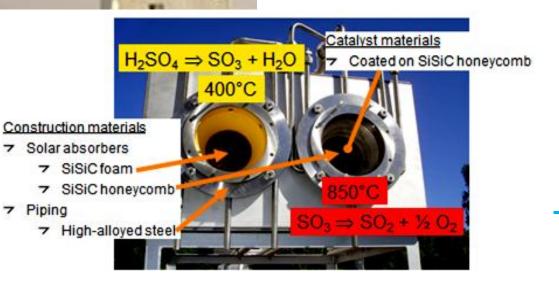
BENEFITS:


- more options to efficiently recycle material streams
- efficient share of equipment
- efficient generation and use of utilities
- increased heat integration
- efficient share of treatment facilities, e.g. treatment of waste waters
- reduced bulk storage and, hence, less emissions from storage
- reduced loading/unloading of raw materials and, hence, less emissions
- more options for recycling condensates, process waters, etc.

However:

- integration might decrease the operational flexibility (shutdown for maintenance might cause shutdown of dependent processes)
- Co-products demand and supply might mismatch





Solar Tower

- Receiver 22.7m² (Intratec, Saint-Gobain
- Tower 60m (Zublin)
- → 2150 Heliostats à 8.2 m² (SHP/AUSRA)
- therm. Storage 1h
- Turbine 1.5 MWe (KKK-Siemens)
- Full capacity hours: ca. 1000 h (Storage)
- Electricity Production Energie 1350 MWh/a

Solar To Hydrogen Hybrid Cycles

	Project c	onsortium	
• • •	Project coordinator (SME) Industry/SME Research University		
		EnginSoft S.p.A.(<u>coordinator</u>)	ITA
	ETT Fin	Aalto-korkeakoulusäätiö 🌣	FIN
	and of	Deutsches Zentrum für Luft- und Raumfahrt e.V. 🌣	GER
		Agenzia per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile 🌣	ITA
	アーシュージ	Outotec (Finland) Oy	FIN
		Erbicol S.A.	SUI
		Oy Woikoski AB	FIN
	-		

☆ - N.ERGHY members

N.ERGHY aisbl – New European Research Grouping on Fuel Cells and Hydrogen

Coordination Tool

www.eucoord.com

The cloud platform for FP7 Projects Management:

- Project structure and consortium management
- Financial accounting
- Automatic Reports generation
- Project Web-site creation
- Comunication and dissemination

European Projects Coordination Tool

EUCOORD's main features

EU

Automatic procedures for FP7 Projects accounting, reports generation, comunication management ...

What is it?

EUCOORD is a web-based application for Project Management and Financial Accounting of FP7 Research Projects

Start using EUCOORD

Freely register and test EUCoord's functionalities and its **user friendly interface**

